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Abstract—Manipulation and re-use of images in scientific pub-
lications is a growing issue, not only for biomedical publishers,
but also for the research community in general. In this work
we introduce BINDER - Bio-Image Near-Duplicate Examples
Repository, a novel dataset to help researchers develop, train, and
test models to detect same-source biomedical images. BINDER
contains 7,490 unique image patches for model training, 1,821
same-size patch duplicates for validation and testing, and 868
different-size image/patch pairs for image retrieval validation
and testing. Except for the training set, patches already contain
manipulations including rotation, translation, scale, perspective
transform, contrast adjustment and/or compression artifacts. We
further use the dataset to demonstrate how novel adaptations of
existing image retrieval and metric learning models can be ap-
plied to achieve high-accuracy inference results, creating a base-
line for future work. In aggregate, we thus present a supervised
protocol for near-duplicate image identification and retrieval
without any “real-world” training example. Our dataset and
source code are available at hms-idac.github.io/BINDER.

I. INTRODUCTION

In this paper, we outline the need and intention behind
generating a large dataset of synthetically manipulated biolog-
ical images that emulate the examples of same-source image
manipulations found in the scientific literature. In addition,
we adapt and evaluate modern methods in image retrieval and
metric learning to address the problem of detecting biomedical
image data manipulation and re-use. Using a large corpus
of synthetically manipulated images (derived online from a
set of open-source available biological images) we train a
selection of metric learning models minimizing Euclidean
distance between same-source image pairs.

Our dataset of synthetically manipulated biological images
consists of training, test, and validation subsets. The training
set contains 7,490 unique image patches (2-D gray-scaled
images of size 256x256), that have a series of manipula-
tions (or deformations) introduced during the training process
to generate unique samples that are then center-cropped to
128x128. The test and validation sets contain 799 and 1022
image pairs (source and source-manipulated 2-D gray-scaled
images of size 128x128 respectively). Importantly, we fix the
manipulations for the validation and test sets in order to create
a benchmark dataset facilitating reproducibile, replicable and
robust comparative assessments for future methods [13], [21].

$Equal contribution.

Finally, we have created supplemental validation and test sets
where, for each pair, one image is of size 128x128 and the
other is of arbitrary larger size, with the smaller image being
a manipulation of a crop of the larger image.

II. RELATED WORK

In the recent past, deep learning and computer vision
communities have proposed several methods and benchmark
datasets to tackle the problem of near-duplicate image detec-
tion. [6] gathered a dataset of near-duplicate images from the
MIR-Flickr image database of 1 million images [9]. In their
work, they primarily focused on identifying “identical” near-
duplicates (generated through some transformation from the
same source) but also gathered non-identical near-duplicates
(images that share scenes and objects). In [11], the authors
present an algorithm to identify identical near-duplicates, their
method uses Lowe’s difference of gaussian (DOG) detector
to identify keypoints from images followed by PCA-SIFT to
compute local descriptors that are invariant to certain transfor-
mations. They employ locality sensitive hashing to index the
descriptors and retrieve near-duplicates. [12] presents a method
that uses cluster seed generation and cluster-growing through
min-hash filters to identify non-identical near-duplicates from
a database of 1 billion images. In [17], the authors compare the
performance of state-of-the-art deep learning models for near-
duplicate image detection on multiple datasets encompassing
images of indoor/outdoor scenes, objects, and people.

The term “near-duplicate” has been used ambiguously in
the past to describe 1) images that share the same objects
and scene, and 2) images that are copies of the same digital
source that were manipulated/transformed. In our paper we
concentrate on the latter: our primary goal is to establish a
benchmark dataset of images that were duplicated from the
same source and manipulated, and utilize the dataset to study
the performance of modern deep learning methods for this
problem. We focus on microscopic images due to our closer
connection to this field.

According to [2], [3], inappropriate image duplication in
biomedical literature is a growing challenge for the scientific
community. The authors estimated that about 35,000 papers
may contain retraction-worthy instances of image duplication.
The prevalence of duplicative images in biomedical journals
is a concern with respect to research integrity as it raises



Fig. 1. Examples of duplicate pairs from each of the 9 classes used for training. Row 1 displays original patches from various sources; Row 2 displays
deformations of the respective patches in Row 1.

questions about the reliability and validity of the published
work. These instances of possible research misconduct through
image duplication within the biomedical literature have been
previously studied and efforts have been made to develop
methods that can be employed to detect duplicative images.

In [1], [22], the authors propose computer-assisted methods
to detect biomedical images that are same source-manipulated.
In [1], SIFT (scale-invariant feature transform) [15] is used for
feature extraction followed by a feature matching algorithm
to identify manipulated images, a patch-wise classifier is
then used as the final step to predict if image patches show
biological images. In [22], a patch-based feature extractor is
applied to residual images (residual images are computed as
the difference between the original and filtered image), and a
detector is built to detect outlier patches. These methods use
explicit feature extraction techniques, hence are limited to a
narrow range of image manipulations.

It is known that in order to study the performance of deep
neural networks a relatively large dataset is desired. But for
our problem access to such dataset from “real-world” cases is
difficult (mostly due to legal constraints). There is at least
one publicly available related dataset, MFND IND [6], of
1958 same-source image clusters, but these are not biological
images. Thus we endeavored to build our own dataset.

III. BINDER: B10-IMAGE NEAR-DUPLICATE EXAMPLES
REPOSITORY

Published images that included confirmed duplication (con-
firmed through institutional and/or regulatory processes), in-
cluding retracted and or corrected data, are not identifiable
and available at a volume that would be required to train a
high capacity neural network. Additionally, to create an openly
available database of published images that were flagged as
problematic, the authors and publishers must be willing to
share their data. As a measure to overcome said limitations,
we created our dataset using synthetic manipulations.

We identified the most common manipulations within a
small set of duplicative images (126 image pairs) found in
peer-reviewed publications'. However, this dataset (let us call

IThese were obtained through PubPeer (https:/pubpeer.com) and/or Re-
traction Watch (http://retractionwatch.com). We will not be able to distribute
this dataset due to legal restrictions.

it RWE — for real-world examples) is comprised of images that
may be subject to copyright protections that prevent us from
sharing more broadly. RWE has a substantial representation
of manipulations and alterations that we identified as often
found within the broader public literature, including: rotation,
translation, scale, or perspective transform; gamma correction,
brightness and contrast adjustment; and jpeg compression arti-
facts. We therefore translated these categories into operations
within our framework which may be applied to any biological
image for creation of a shareable dataset.

We gathered biological (microscopy) images from the fol-
lowing open-source public repositories: NYU Mouse Embryo
Tracking Database’ (METD), the Broad Bioimage Benchmark
Collection* (BBBC), the Adiposoft Image Dataset* (AID),
and the Open Microscopy Image Data Resource® (IDR). The
images encompass 17 classes/categories, from various cell
types and model organisms, including C. elegans, adipocytes,
human histology, mouse nuclei, and mouse embryo, captured
through different microscopes. Figure 1 contains representative
patches for each of the 9 categories in the training set; Row
1 demonstrates examples of original patches from various
sources and Row 2 displays deformations (series of transforms
of various types) of respective patches in Row 1.

To create BINDER we split the microscopy images class-
wise into training, test, and validation sets (17 categories split
into 9, 4, and 4 classes respectively). Images were tiled in
256x256-pixel non-overlapping patches. As shown in Figure 2
(a), for each patch in the validation and test sets, manipulations
shown in Table I were applied to create a duplicate patch. Both
the original and duplicate patch were then center-cropped to
128x128 pixels to remove any border artifacts caused by the
manipulations. Finally, we manually removed any image pairs
without meaningful content, i.e. images that were blank or
just noise. The training set was left as 256x256-pixel patches
so the same manipulation procedure could be applied online
during training.

The choice of patch size was made based on image content

Zhttp://celltracking bio.nyu.edu/

3https://data.broadinstitute.org/bbbc/, datasets BBBC 002, 010, 015, 016,
019, 039, 041, and 042

“https://imagej.net/Adiposoft

Shttps://idr.openmicroscopy.org/



TABLE I
SYNTHETIC MANIPULATIONS

Manipulation Procedure
Vertical Flip P =05
Horizontal Flip P =05
Color Invert P=0.1
Perspective Corners perturbed U (—20, 20) pixels
Scale U(0.75,1.25)
Rotation U(—20,20) degrees

2 and y Translation U(—10, 10) pixels each

Gamma Correction U(0.5,1.5)
Brightness U(0.9,1.1)!
Contrast U(0.5,1.5)!

JPEG Compression P = 0.1, quality = 50

P signifies probability of manipulation being performed, U
represents the range of random uniform distribution in which
manipulation will be applied.

I See https://pillow.readthedocs.io/en/stable/reference/
ImageEnhance.html for the meaning of parameters.

and computational capacity. Presumably the models would
work better on higher resolution, but training and inference
would take longer. The choice of grayscale (single-channel)
images was done because this is the most general case in
biology — while in images from consumer cameras it makes
sense to use RGB (3 channels), in biology there is no standard
number of channels beyond 1.

IV. MODELS

We frame the task of duplicate image detection as one of
image retrieval. Given a query image and potential duplicate
images, a model computes a global descriptor (an embedding)
for each image. An image is decided to be a duplicate to the
query image if the euclidean distance between their descriptors
is less than a certain threshold, ¢. Figure 2 illustrates the
components of our model.

First, following [18], we investigate two models, each
consisting of a pre-trained feature extractor (VGG19[19] and
ResNet50[8], respectively) followed by a generalized-mean
(GeM) pooling layer, a fully-connected layer, and lastly Lo
normalization. The models are trained to minimize triplet loss
over the training set — Figure 2 (c). In previous end-to-end
image retrieval works [18], [7], negative pairs are chosen by
mining the most similar non-matching images over the entire
training set. This procedure is important to ensure non-trivial
negative cases but necessitates access to all potential pairs in
the training set. In order to obtain hard negative cases (i.e.
non-duplicate images that the model thinks are similar) over
a dataset in which pairs are generated online, we adopt the
use of hardest-in-batch sampling [16]. That is, for each batch
X = (A4, Bi)i=1..n, where A; and B; are duplicate images
with output embeddings (a;, b;);=1..n, we compute the triplet
margin loss as:

Z max (0, d(a;, b;) —min(d(a;, b;), d(b;, ax)) + «)

i=1l..n
ey
where d(z,y) = ||z — y||*; b; and ay, are the closest non-
duplicates of a; and b;, respectively, which are found using
the pairwise distance matrix D, where D;; = d(a;,b;) (see
Figure 2 (b)).

As illustrated in Figure 2 (d), positive image pairs A; and
B; are fed into the siamese CNN model and their closest
non-duplicates (hardest negatives) are selected from within the
batch during training. In the triplet loss, « is a hyper-parameter
representing the margin between positive and negative pairs.
We use a value of o = 1.0 for all experiments. The loss func-
tion simultaneously rewards the network for maximizing the
distance between negative pairs, and minimizing the distance
between positive pairs. Hence during training, the model learns
a distance metric that places duplicate images close to each
other, and non-duplicate images farther apart (Figure 2 (c)).

The models were pre-trained on COCO [14] with an output
embedding size of 2048, and a batch size of n = 256 image
pairs, generated online with synthetic manipulations shown in
Table I. In order to maximize batch size given limited memory
budget, we use gradient checkpointing as in [5]. Pre-training
is done for 75 epochs, with a learning rate of 0.1. This process
took less than one day on a single Nvidia 1080 Ti GPU. Pre-
training was necessary to prevent overfitting on the biological
training set.

Next, each model was fine-tuned on the biological train-
ing set (BINDER) using the same hyper-parameters. Model
weights with the lowest validation loss were saved for testing.

The third model we analyze is based on [20], [10].
To extract features from the input data, we construct a
shallow convolutional siamese autoencoder model also pre-
trained on COCO [14]. A siamese autoencoder is made of
two autoencoders, where the encoders (F; and FE5) share
weights and the decoders (D; and Ds) have independent
weights. The encoder reduces the higher-dimensional in-
put to a lower-dimensional representation while preserving
the most important features that the decoder reconstructs
back into the original input. Based on this observation,
the encoder extracts the lower-dimensional representations
(E1(4;) and FE5(B;)) from the input pairs (A;, B;). The
representations are then downsampled using max and aver-
age pool layers and the resultant vectors are concatenated
(outputys = [maxpeer(E1(A;)), averagepoo(E1(A;))] and
outputes = [mazpeel(E2(B;)), averagepoor(E2(B;))]). The
concatenated vectors are passed through fully connected layers
with shared weights and the network outputs the resultant
embeddings (a; and b; respectively of size 256).

This model is pre-trained on COCO for 15 epochs (since the
network is relatively shallow) with a learning rate of 0.0001,
then fine-tuned on BINDER. For model stability, a batch size
of n = 64 was selected for pre-training, and n = 16 for
fine tuning. The network is trained by minimizing the triplet
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Fig. 2. Model diagrams. (a) Synthetic image manipulation for duplicate pair generation. Random manipulations (see Table I) are applied to generate duplicate
images. (b) Pairwise distance matrix as used during training. (c) Triplet margin loss minimizes the distance between positive pairs and maximizes the distance
between negative pairs during training. (d) Model training diagram. (e) Model testing/deploying diagram.

margin loss of Equation (1), using random sampling followed
by the same hardest-in-batch negative sampling method.

We experimented with a range of architecture designs and
hyper-parameters, but did not perform a comprehensive search
for the best model since the goal here was to provide baselines
from a few inference and generative architectures, as a starting
point for other researchers.

V. EVALUATION

For evaluation of our models, we first use an approach
similar to that of [17]. For each duplicate image pair, we
randomly select one to be the query image. We then compose
negative and positive pairs:

« Positive pairs are composed of the query image and its

duplicate.

o Negative pairs are composed of the same query image
and the closest non-duplicate image within the dataset.
Since these pairs depend on the distance between images,
negative pairs must be composed for each model.

We then quantify the models’ ability to retrieve duplicate
image pairs by measuring the area under the ROC curve (AUC)
[4]. This quantification metric will approximate the models
performance over larger datasets, in which the number of non-
duplicate pairs will likely be exponentially larger than the
number of duplicate pairs [17].

Figures 4 and 5 illustrate examples of closest non-duplicate
and farthest duplicate image pairs, respectively.

We do additionally evaluate our model in a similar man-
ner, using randomly selected negative pairs as a comparative
baseline assessment. This will indicate a models ability to
differentiate random pairs of non-duplicate images, which
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Fig. 3. ROC curve for one run on each dataset, using hard negative mining. Log scaling is used for MFND IND. Threshold is sampled in [0, 2].

should be very high given the trivial nature of most randomly
selected pairs.
Each model is evaluated over the following datasets:

1) BINDER test set (799 image pairs).

2) RWE (126 image pairs).

3) MFND IND (1958 image clusters, pairs randomly se-
lected for the few clusters with > 2 images).

Since MFND IND includes images of scenes and objects,
it is not evaluated with models fine-tuned on BINDER. All
images are converted (if needed) to grayscale 128x128 pixel
patches before testing. The model deployment pipeline is
illustrated in Figure 2 (e).

VI. RESULTS

Figure 3 shows the models’ performances while using hard
negative mining on BINDER test, RWE, and MFND IND
datasets. The AUC scores for each models’ performance, while
using hard negative mining and random selection, are listed in
Table II. After comparing the AUC scores across all models
and datasets, we observe that the AUC scores for random
negative sampling are consistently higher than the AUC scores
for hardest negative sampling. In Table II, the AUC scores for
random negative sampling are in the range 0.92 - 1.00 across
all models, whereas for hardest negative sampling the AUC
scores are in the range of 0.25 - 0.99. This observation aligns
with our initial prediction: since randomly selected negative
pairs tend to be easier to distinguish, they result in higher
AUC scores. In comparison, hardest negative sampling selects
image pairs that may share a lot of features thereby affecting
the models’ ability to distinguish between non-duplicates. It
is worth noting that with hard sampling a model assigning
random embeddings to images will achieve an AUC that
approaches 0, as there will nearly always be an embedding
closer in distance to the query embedding than the actual
duplicate. Given that the MFND IND image pairs are all much
more unique in nature, the AUC score is comparatively high.

As is evident from Figure 3, the VGG19 + GeM model
outperforms the two other models (see purple lines, both solid
and dashed, on all plots). In addition, we observe that fine-
tuning on the field specific dataset (BINDER) does indeed

TABLE II
MODEL BENCHMARKS

Model Fine-tune  BINDER Test RWE MEFND IND.
Autoencoder None 0.25/0.92 0.53/0.95 0.935/0.999
Autoencoder Bio 0.25/0.93 0.55/0.96
RN50+GeM None 0.54/0.99 0.70/0.98  0.985/1.000
RN50+GeM Bio 0.55/0.99 0.68/0.98
VGG19+GeM None 0.58/0.99 0.69/0.99  0.988/1.000
VGG19+GeM Bio 0.63/0.99 0.69/0.98

Area under the ROC curve for each dataset tested with [hardest/random]
negative sampling. Each result is the median of 5 runs.

yield improved results. As shown in Table II, the VGG19
+ GEM model’s AUC score with hardest negative sampling
improved from 0.58 to 0.63.

Finally, as a visual example of how the models make
calls on image identities, Figure 4 demonstrated how one of
the models (VGG19 model shown) differentiate non-matching
(but similar) image data. For example, in Figure 4, compare
Column 1 [input images] vs Column 2 [non-matching (but
visually similar) negative controls]. Alternatively in Figure
5, the model demonstrates its ability to identify duplicated
images that may be altered or modified. For example, in Figure
5, compare Column 1 [input images] vs Column 2 [matching
(but modified) matched images].

VII. CONCLUSION

Our primary contribution is towards creating an assessment
platform to identify and metrically assess image duplications
with and without modifications in the recording or reporting
of scientific research. We have also established a methodology
(protocol) for generating a standard dataset of synthetically
manipulated biological images; both for utilization with our
models of metric assessment and for establishing a benchmark
to evaluating and validating similar work in the commu-
nity. This includes generating a static image reference set
(BINDER) that we are making available with our code via
our project page: hms-idac.github.io/BINDER/

We tested the performance of three deep neural networks
that were pretrained on COCO and fine-tuned on BINDER’s
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Fig. 4. Closest non-duplicate images pairs in the test set, using VGG19 model.
Query image is on the left (Column 1), and examples of model selection
of their closest matching associated (but different) images are on the right
(Column 2).

]

training set. Such networks extract global descriptors (em-
beddings) from each image in a pair before comparison (via
euclidian distance). AUC was used to quantify the performance
of the models on the RWE, MEND IND, and BINDER test set.
The VGG19 + GeM model gave the best results in detecting
same-source image manipulations within the BINDER test set
with an AUC of 0.63 for hardest negative sampling and 0.99
for random sampling.

One limitation of the tested models is in the global nature of
the embeddings. Consider for example images I and J sharing
content x and images J and K sharing content y (but not x).
The reason why (/,J) is a near-duplicate is not the same as the
reason why (J,K) is. That is, there’s no global descriptor for
J that would make (I,J) and (J,K) near-duplicates without
also making (/,K) near-duplicates. Thus, using local feature
descriptors may yield improved results.

Potential Impact and Application Considerations

A tool that has the potential of identifying and assessing
possibly duplicative images in scientific literature can be

i s

Fig. 5. Farthest duplicate images pairs in the test set, using VGG19 model.
Query image is on the left (Column 1), and examples of model selection of
their most distant (but duplicate) associated images are on the right (Column
2).

extremely useful for our community in the surveillance and
maintenance of research data integrity. As we contemplated
in the Introduction of this paper, there are various research
workflows and pipelines where automated image detection
platforms could provide quality assurance check-points that
have to-date been largely absent or reliant on individual,
manual, “by eyesight” scanning. However, as algorithms and
tools (such as the platform our team is developing) become
more publicly available, the scientific and research integrity
community should consider all ways in which such tools
may be utilized by our colleagues. Instances of duplication
within the literature could be genuine errors or the authors
might have valid-reasons for reusing images. Each scenario
of potential image duplication/manipulation is unique, and
hence requires thoughtful discussion and review with authors
and associated colleagues and stakeholders invested in the
recording or reporting of associated research data.

Finally, with respect to benchmark and standards develop-
ment, we can envision many ways in which our BINDER
dataset and our synthetic dataset methodology could prove



useful to other teams. Certainly the goal of the BINDER
dataset and our intention behind establishing it was to aid the
design and development of models that detect near-duplicate
images in biomedical literature. However, we foresee addi-
tional applications where either the BINDER data set, the
dataset methodology, or both, may assist teams developing
other types of image retrieval technologies (e.g., medical im-
age retrieval platforms for improved diagnosis and treatment).
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