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Abstract

Foundation models for materials modeling are advancing quickly, but their training
remains expensive, often placing state-of-the-art methods out of reach for many
research groups. We introduce Nequix, a compact E(3)-equivariant potential
that pairs a simplified NequlP design with modern training practices, including
equivariant root-mean-square layer normalization and the Muon optimizer, to
retain accuracy while substantially reducing compute requirements. Built in JAX,
Nequix has 700K parameters and was trained in 500 A100-GPU hours. On the
Matbench-Discovery and MDR Phonon benchmarks, Nequix ranks third overall
while requiring less than one quarter of the training cost of most other methods, and
it delivers an order-of-magnitude faster inference speed than the current top-ranked
model. We release model weights and a JAX codebase at https://github.com/
atomicarchitects/nequixl

1 Introduction

Machine learned inter-atomic potentials (MLIPs) are rapidly improving in capability and scope,
with foundation models trained on broad datasets of atomistic materials offering the promise of
augmenting or replacing expensive ab initio density functional theory (DFT) calculations [Batatia
et al., [2023]]. While performance on community benchmarks such as Matbench-Discovery [Riebesell
et al., 2025] is rising, the computational costs of both data generation and curation as well as the
training of MLIP models on these datasets remain prohibitively expensive for many labs.

We pursue an orthogonal goal to scaling: a lower computational cost recipe that preserves strong
downstream accuracy. Concretely, we revisit a simplified E(3)-equivariant architecture based on
NequlP [Batzner et al., 2022]] with modern training practices: root-mean-square layer normalization
for stability, dynamic batching to maximize GPU utilization, and optimizer choices inspired by
“speedrunning” deep learning workflows [Jordan et al.|[2024a]]. The resulting model, Nequix, is 700K
parameters and can be trained in 500 gpu hours, while remaining competitive with larger and more
costly to train models on Matbench-Discovery and other phonon prediction tasks.

Our contributions are threefold: 1) a simplified NequlP architecture featuring an equivariant layer-
norm, with an efficient JAX implementation. ; 2) a budget-conscious training pipeline leveraging
dynamic batching and the Muon optimizer [Jordan et al.,2024b|] which achieves fast convergence;
and 3) evaluations on the Matbench-Discovery and MDR phonon [Loew et al., 2025]] benchmarks.
Compared to prior MPtrj-trained models [[Chen and Ong| 2022, [Deng et al.|[2023| [Batatia et al., 2023}
Bochkarev et al., 2024} [Neumann et al., 2024, Barroso-Luque et al., [2024, Fu et al., 2025} |[Zhang
et al.}2025] |Yan et al., 2025]] , we rank in third on both benchmarks with one fourth the training cost
of any other published training cost and a 10x faster inference speed over current top ranking model.
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Figure 1: (a) Nequix architecture, a simplified version of NequlP [Batzner et al., 2022]], with a
species-independent residual connection and layer normalization. (b) Combined performance scores
of compliant models on the Matbench Discovery, unique prototypes. (c) Available published training
times of current compliant models.

2 Methods

Architecture Nequix follows a simplified version of the NequlP [Batzner et al., 2022] architecture,
as shown in figure[Th. We adopt two modifications suggested by [Park et al.|[2024]; the species-specific
self-connection layer within the interaction block is replaced with a single linear layer, and unused
non-scalar representations are discarded from the final layer. Lastly, we add an equivariant root-mean-
square layer normalization (RMSNorm) [Liao et al.| [2023]], which we find improves performance
in our optimization setting. We document the full architecture hyper-parameters and the rationale
behind each decision in Table[ATl

Implementation Nequix is implemented in JAX [Bradbury et al.|, 2018 with Equinox [Kidger and
Garcial 2021]], taking advantage of just-in-time compilation and efficient automatic differentiation.
Following standard energy-conserving MLIP practice [Fu et al., [2025]], forces are obtained as the
negative energy gradient with respect to atomic positions, —V, E, and stresses as the energy derivative
with respect to strain, normalized by volume, o = V ~! 9F/0e, where E is the predicted total energy
of the system, r is an atom position, ¢ is the strain tensor, V' is the simulation cell volume, and o
denotes the stress tensor.

Dynamic batching Materials radius graphs vary widely in their numbers of nodes and edges due
to differences in unit-cell size and atom count. With fixed-size batching, the largest graphs dictate
memory usage, leaving GPUs underutilized for most batches. To keep batch workloads more uniform
while respecting memory limits, we use dynamic batching [Speckhard et al.| [2025]]: each batch
is filled up to caps on the total nodes and edges. We set these caps to 1.1x (ideal batch size) X
(dataset-average nodes-per-graph and edges-per-graph), respectively. Batches are then padded to
these caps to fulfil the static shape requirements of JAX [|Godwin* et al., 2020]].

Optimization and normalization We compare the widely used Adam optimizer |Kingma and Ba
[2014] with the recently proposed Muon optimizer Jordan et al.|[2024b]. Using a smaller version
of Nequix on MPtrj [Jain et al., 2013| [Deng et al., [2023]] with hidden irreps of 128x0e + 64x1o0,
we sweep learning rates of {0.03,0.01,0.003,0.001} for Adam and Muon, each with and without
RMSNorm. The lowest validation error runs for each optimizer are shown in Fig. 2] We find that
the Muon configuration achieves comparable energy/force errors to Adam in 60-70% of the epochs,
and results in a 7% reduction in energy MAE. We also find a significant reduction in the variance of
stress error, which we notice in runs that use RMSNorm. Notably, the presence of the RMSNorm
layer generally resulted in lower validation error for Muon-based training configurations, and higher
for those using Adam.

Training procedure The final Nequix model is trained for 100 epochs on MPtrj [Jain et al., 2013,
Deng et al.,|2023]], which we leave 5% out of training for validation. More details on the training
settings are provided in Sec. [A.1] The model was trained on 4 NVIDIA A100 GPUs in 125 hours, for
a total cost of 500 GPU hours.
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Figure 2: Validation metrics during training a smaller version of Nequix configuration with Adam
and Muon, trying learning rates in {0.03,0.01,0.003,0.001} and with/without RMSNorm. This
model configuration uses the same hyperparameters as the final model, except with hidden irreps of
128x0e + 64x10. The dotted horizontal line shows the best validation performance reached during
the Adam training.

3 Experiments

3.1 Matbench-Discovery benchmark

Matbench-Discovery [Riebesell et al.|[2025]] provides a standard framework for evaluating interatomic
potentials in a high-throughput materials screening task consisting of geometry optimization and
energy prediction on a set of 257,487 generated structures, and thermal conductivity prediction on a
set of 103 structures. Ground truth is calculated with DFT/PBE level of theory, the same as MPtrj.
The primary metrics include: 1) the F1 for stable/unstable classification after relaxation; 2) root
mean squared displacement (RMSD) between predicted and reference structures after relaxation; and
3) symmetric relative mean error in predicted phonon mode contributions to thermal conductivity
K (ksrME)- A normalized and weighted combination of these metrics are then used to compute a
combined performance score (CPS), which is used for ranking.

Following |Riebesell et al.| [2025]] we integrate our interatomic potential as Atomic Simulation
Environment (ASE) calculator, which is then used to perform structure relaxation and phonon
calculations with the default settings of the benchmark. For comparison, we consider only models
in the compliant subset of the benchmark. This consists only of models that are trained on MPtrj
or subsets, which limits data leakage and offers a more fair comparison among methods. Table [I]
contains the performance of Nequix along with all current compliant models at the time of writing.
We also include the reported training cost for the models when available, visualized in Fig. |1} We
find that Nequix ranks third by CPS, outperforming most models at a fraction of the training cost.
It is noteworthy that this high ranking is due to high performance in the thermal conductivity task,
however the F1 score is still comparable to many of the other methods.

Table 1: Matbench-Discovery compliant leaderboard, sorted by combined performance score (CPS).
Metrics are shown for the unique prototypes subset. Train cost is measured in A100 hours.

Model Params Traincost RMSDJ] &ksrmel  FIT CPS?t
eSEN-30M-MP 30.1M 0.075 0.340 0.831 0.797
Eqnorm MPtrj 1.31M 2000 0.084 0.408 0.786 0.756
Nequix 707K 500 0.085 0.446 0.750 0.729
DPA-3.1-MPtrj 4.81M 0.080 0.650 0.803 0.718
SevenNet-13i5 1.17M 0.085 0.550 0.760 0.714
HIENet 7.51M 2888 0.080 0.642 0.777  0.707
MatRIS v0.5.0 MPtrj  5.83M 0.077 0.861 0.809 0.681
GRACE-2L-MPtrj 15.3M 0.090 0.525 0.691 0.681
MACE-MP-0 4.69M 2600 0.092 0.647 0.669 0.644
eqV2 S DeNS 31.2M 0.076 1.676 0.815 0.522
ORB v2 MPtrj 25.2M 0.101 1.725 0.765 0.470
M3GNet 228k 0.112 1.412 0.569 0.428
CHGNet 413k 0.095 1.717 0.613  0.400




3.2 MDR phonon benchmark

We also evaluate performance on the MDR phonon benchmark [Loew et al.|[2025]], a set of 10,000
phonon calculations also done with DFT/PBE level of theory. We follow the identical procedure
to [Loew et al.| [2025]], first performing a geometry relaxation, then phonon calculations using
displacements of supercell. Mean absolute error (MAE) of properties derived from the phonon
calculation: maximum phonon frequency wp, ., vibrational energy .S, Helmholtz free energy F', and
heat capacity at constant volume Cy . Table 2] demonstrates the performance of Nequix compared to
other MPtrj-trained models. Similarly to Matbench-Discovery, we achieve performance within the
top three of models, with a fraction of the parameter count of other methods.

Table 2: Model performance of MPtrj-trained models on the MDR phonon benchmark, sourced from
Loew et al.|[2025]] and [Fu et al.| [2025]].

Model MAE(wmax) MAE(S) MAE(F) MAE(Cy)
eSEN-30M 21 13 5 4
SevenNet-13i5 26 28 10 5
Nequix 26 33 12 6
SevenNet—0 40 48 19 9
GRACE-2L (r6) 40 25 9 5
MACE 61 60 24 13
CHGNet 89 114 45 21
M3GNet 98 150 56 22

3.3 Inference speed

Lastly, we compare inference speed against existing ma-
terials potentials using a script from the MACE [Batatia
et al., |12022] reposito modified to work with Nequix
and eSEN. We run each model in the configuration in
which it is used within its ASE calculator, without com-
pilation for the PyTorch-based MACE-MP-0 and eSEN
models, and just-in-time compilation for the JAX-based
Nequix. Figure [3|compares performance of each model ; ‘ ; .
in terms of steps per day vs. number of atoms. In this & N N A IV N
study, Nequix is about 10x faster than eSEN, and roughly Number of atom: A
2x slower than MACE-MP-0, offering a new option in

the accuracy vs. speed Pareto frontier at a fraction of the Figure 3: Inference speed of various
training cost. models in steps per day.
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4 Conclusion

We presented Nequix, an E(3)-equivariant interatomic potential that pairs a simplified NequlP
architecture with modern training practices. Our results show that Nequix achieves competitive
accuracy on Matbench-Discovery and the MDR phonon benchmark at less than one quarter of the
reported training cost of many contemporaries. This resource-efficient recipe provides a practical
alternative to large-scale foundation models and helps broaden access to high-quality atomistic
modeling in settings with more limited compute. We release trained weights and a JAX codebase to
streamline reuse and extension.

Looking ahead, we see several promising directions: scaling training duration and data while main-
taining budget discipline, exploring pretraining and fine-tuning regimes across broader datasets, and
pushing cost even lower through model distillation, pruning, quantization, kernel-implementations,
or more data-efficient training. We hope Nequix serves as a strong, efficient baseline for future work
on accessible materials foundation models.

"https://github.com/ACEsuit/mace/blob/main/tests/test_benchmark.py
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A Appendix

A.1 Training and model configuration
Table shows the hyper-parameters used to train Nequix. The model is trained for 100 epochs,

using an MAE loss function on energy and stress, and /5 loss on forces. We use a linear warmup with
cosine decay learning rate schedule.

Table Al: Hyper-parameters used and rationale behind selection

Hyper-parameter

Value

Notes/Rational

Radial cutoff 6A Most models, use 5 or 6 A; 6 performed slightly
better in preliminary validation performance.

Hidden irreps 128x0e + 64x10 + 32x2e + 32x30  From SevenNet-13i5.

Limax 3 Consistent with hidden irreps.

Niayers 4 Balance of performance and efficiency.

Radial basis size 8 From NequlP and analysis from Sec. 5.2 of |[Fu
et al.| [2025]]

Radial MLP size 64 From NequlP.

Radial MLP layers 2 From NequlP.

Polynomial cutoff p 6.0 From NequlP.

Radial basis function Bessel From NequlP. Also tried Gaussian, which had
minimal difference on validation performance.

Learning rate 0.01 Selected from {0.03,0.01,0.003,0.001} based
on validation performance early in training.

Warmup epochs 0.1 From eSEN.

Warmup factor 0.2 From eSEN.

Optimizer Muon See Sec.

Weight decay 0.001 From eSEN. Also tried 0.0, which lead to worse
validation performance.

Energy weight 20 From eSEN.

Force weight 20 From eSEN.

Stress weight 5 From eSEN.

Batch size 256 (dynamic) See Sec.

Number of epochs 100 Standard training duration.
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