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Abstract
Many materials properties depend on higher-order
derivatives of the potential energy surface, yet
machine learned interatomic potentials (MLIPs)
trained with standard a standard loss on energy,
force, and stress errors can exhibit error in curva-
ture, degrading the prediction of vibrational prop-
erties. We introduce phonon fine-tuning (PFT),
which directly supervises second-order force con-
stants of materials by matching MLIP energy Hes-
sians to DFT-computed force constants from fi-
nite displacement phonon calculations. To scale
to large supercells, PFT stochastically samples
Hessian columns and computes the loss with a
single Hessian-vector product. We also use a sim-
ple co-training scheme to incorporate upstream
data to mitigate catastrophic forgetting. On the
MDR Phonon benchmark, PFT improves Nequix
MP (trained on Materials Project) by 55% on aver-
age across phonon thermodynamic properties and
achieves state-of-the-art performance among mod-
els trained on Materials Project trajectories. PFT
also generalizes to improve properties beyond
second-derivatives, improving thermal conductiv-
ity predictions that rely on third-order derivatives
of the potential energy.

1. Introduction
Many computational materials workflows use density func-
tional theory (DFT) to compute materials properties from
first principles. DFT’s computational cost has motivated
machine learned interatomic potentials (MLIPs) as fast sur-
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rogates that can replace or accelerate DFT in large-scale
screening and simulation (Yang et al., 2024; Merchant et al.,
2023). Accurate predictions of phonon and vibrational prop-
erties require an MLIP to match the curvature of the DFT
potential energy surface (PES), not just energies, forces and
stress. However, existing “universal” MLIPs are typically
trained with supervision over energy, force, and stress; this
only indirectly constrains second derivatives, leading to er-
rors in the curvature that degrade phonon dispersions and
thus various thermodynamic properties (Deng et al., 2025).
In this work, we show that Hessian error strongly correlates
with error across multiple phonon thermodynamic metrics.

In materials, training directly on curvature is challenging
because phonon force constants in periodic crystals are com-
monly obtained by finite-displacement calculations in su-
percells; the supercell must be large enough that displaced
atoms do not interact with periodic images of themselves,
and to capture interactions that extend beyond the primi-
tive cell. These requirements often necessitate hundreds
or thousands of atoms, where the 3N × 3N Hessian, or
force-constant matrix scales quadratically in system size,
making full Hessian training infeasible.

We introduce phonon fine-tuning (PFT), a fine-tuning pro-
cedure that directly incorporates second-order force con-
stants by matching energy Hessians from the MLIP to
DFT-derived force constants (Fig. 1c(iv)). To scale to
large supercells, PFT stochastically samples force-constant
columns and computes the corresponding loss via a single
Hessian-vector product, reducing the training step cost from
quadratic to linear with respect to the number of atoms. Be-
cause of the relative diversity of existing phonon datasets
and lack of non-equilibrium geometries, we introduce a sim-
ple co-training strategy to mitigate catastrophic forgetting
by interleaving upstream pretraining data during fine-tuning.

We evaluate PFT by fine-tuning the Nequix MP founda-
tion model (Koker et al., 2025) and benchmarking on held
out calculations from the PBE MDR Phonon benchmark
(Togo, 2023a; Loew et al., 2025). At a fraction of the cost
of the initial pretraining, PFT reduces property error by 55%
on average across maximum phonon frequency, vibrational
entropy, Helmholtz free energy, and heat capacity, achiev-
ing state-of-the-art performance among models trained on
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Figure 1. Overview of PFT framework. a Finite-difference calculations rely on the construction of a supercell to obtain force
constants from interactions beyond the unitcell. b MLIPs are pre-trained on standard unitcell DFT calculations. c-i Up to O(3N) atomic
displacements are applied to the supercell, with the number reduced by crystal symmetries; forces are computed with DFT, and numerical
derivatives yield the force constant matrix. c-ii The same workflow can be used for MLIPs, replacing DFT force calculations with force
predictions from the model. c-iii Alternatively, the force constants can also be computed as the analytical Hessian of the predicted energy
directly. c-iv In this work, we use the Hessian-vector product to efficiently compute columns of the Hessian, and align with sampled DFT
force constant columns during training. Note the shown force constants are downsampled for clarity.

MPtrj (Deng et al., 2023; Jain et al., 2013). Furthermore, we
demonstrate that PFT improves generalization to third-order
derivatives, improving Matbench Discovery thermal conduc-
tivity predictions from 0.446 to 0.306 κSRME, which is also
state-of-the-art among MPtrj-trained models. Lastly, we
demonstrate that through co-training, PFT degrades perfor-
mance by less than 1% on the Matbench Discovery stability
classification task, which is otherwise greatly impacted by
training on phonon data alone.

Our contributions are:

• A fine-tuning objective that directly aligns the curva-
ture of the MLIP PES by aligning energy Hessians
with DFT-derived force-constants.

• A scalable strategy for training on phonons of large
supercells by sampling columns of the Hessian, and
training with Hessian-vector products.

• A simple co-training recipe that mitigates catastrophic
forgetting by interleaving pre-training data into the
finetuning procedure.

• Empirical results demonstrating that Hessian error
strongly correlates with phonon property error, and

that the introduced training objective greatly improves
performance on phonon properties while preserving
performance on other tasks.

2. Background
2.1. Machine learned interatomic potentials

Machine learned interatomic potentials (MLIPs) seek to
model the Born-Oppenheimer potential energy surface
E(r, z) for atoms with positions r ∈ R3Na , and species
z ∈ ZNa

+ , where Na is the number of the atoms in the
system. Neural network MLIPs typically build a model
for predicted energy Êθ(r,a) parameterized by weights θ,
based on local atomic environments (Unke et al., 2021).
These models are trained on quantum chemistry calcula-
tions such as density functional theory (DFT) (Hohenberg
& Kohn, 1964).

Recent work has demonstrated the success of so-called uni-
versal MLIPs, which seek to model the PES across a broad
range of chemistries and geometries by training on vast DFT
databases (Chen & Ong, 2022; Batatia et al., 2025a; Wood
et al., 2025). These models offer the promise of acting as a
surrogate to otherwise computationally expensive quantum
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chemistry calculations, enabling higher-throughput compu-
tational materials workflows.

In this work we focus on energy-conserving MLIPs, where
forces and stresses are obtained as derivatives of a scalar
energy model, which ensures that the curl of the predicted
forces are zero by design.

With atom positions r in a periodic cell of volume V , pre-
dicted forces are computed as

F̂a = −∇raÊ(r) (1)

Predicted stress on the lattice is computed as the derivative
of energy with respect to symmetric strain tensor ε:

σ̂ij =
1

V

∂Ê(r)

∂εij

∣∣∣∣
ε=0

(2)

These quantities are convenient to compute with automatic
differentiation (AD) from Ê. Note that for the remainder
of the paper we have dropped the dependence on atomic
species z for clarity.

MLIPs for periodic systems are typically trained using a
loss over energies, forces, and stresses computed from DFT.
This is constructed as a weighted sum of errors over each
term:

LEFS = λELE + λFLF + λσLσ (3)

with individual loss terms

LE =

∣∣∣∣∣ ÊNa
− E

Na

∣∣∣∣∣ LF =
1

Na

Na∑
a=1

∥∥∥F̂a − Fa

∥∥∥2
2

(4)

Lσ =
1

9

3∑
i=1

3∑
j=1

|σ̂ij − σij | (5)

where E, F, and σ denote DFT-computed energy, force,
and stress respectively, and coefficients λ are tunable hyper-
parameters to allow weighting of different quantities. Uni-
versal potentials are often trained on databases of relaxation
trajectories (Deng et al., 2023; Jain et al., 2013; Schmidt
et al., 2024) or by perturbing equilibrium structures to sam-
ple more of the PES (Barroso-Luque et al., 2024; Kaplan
et al., 2025). Prior work has found that due to the bias
of data towards equilibrium structures, there often exists a
softening in the curvature of the PES (Deng et al., 2025).

2.2. Harmonic phonons and vibrational properties

Phonons arise from small lattice vibrations around a local
minimum of the PES, and their spectra and scattering control

many materials properties of interest, including thermal
conductivity, thermal expansion, and heat capacity (Ziman,
2001). They also dictate dynamic stability and, via electron-
phonon coupling, can enable superconductivity (Giustino,
2017).

Phonon frequencies are calculated from the eigenvalues
of the dynamical matrix, which is constructed by mass-
weighting the real-space force constants Φ, and applying a
lattice Fourier transform that introduces the wavevector k
dependence. The force constants are defined as the second
derivative of the PES with respect to atomic positions:

Φaibj =
∂2E

∂ra,i∂rb,j
(6)

where i and j are Cartesian indices, and a and b are atom
indices.

2.3. Phonon calculations

Phonon calculations are usually conducted with DFT in one
of two ways: 1) using density functional perturbations the-
ory (DFPT), or 2) DFT and with finite displacements. The
latter is more common due to its generality across commonly
used functionals (Miranda).

With finite displacement, second-order force constants are
approximated with

Φaibj ≃ −Fb,j(∆ra,i)− Fb,j

∆ra,i
(7)

Fb,j(∆ra,i) are forces where atom a is displaced in direc-
tion i, and generally Fb,j = 0 due to the atom positions
being at equilibrium. This approximation works well due
to the smoothness of DFT under small displacements, com-
monly 0.01 Å for these calculations. The number of finite-
displacement calculations (3N) can typically be significantly
reduced by leveraging the symmetry of the crystal (Togo
et al., 2023)

It is important to note that phonon calculations using finite
displacement require large supercells for calculations to
avoid self-interaction with the displaced atom, and correctly
model interatomic force constants that extend past the unit
cell (Fig. 1a).

MLIPs can be used for phonon calculations in the same
way as DFT, constructing the force constants by conducting
force calculations under finite displacement (Fig. 1c(i-ii)),
which has shown success in prediction of both second-order
(Loew et al., 2025) and third-order (Póta et al., 2024) phonon
properties.
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Figure 2. Hessian error vs. phonon properties. Error in the Hessians on the test subset of the MDR Phonon data are plotted against heat
capacity errors for several foundation models trained on MPtrj. Hessian errors correlate with improved property prediction.

3. Methodology
3.1. Hessian error and vibrational properties

Because phonon spectra and derived vibrational properties
are functions of the second-order force constants, models
must match the curvature of the PES to achieve accurate
phonon predictions. Using the finite displacement method
above, we calculate the error in the second-order force con-
stants, or Hessians of several models trained on MPtrj (Deng
et al., 2023; Jain et al., 2013), evaluating them on a portion
of the force constants and phonon properties from the PBE
MDR phonon dataset (Loew et al., 2025; Togo, 2023a). Fig-
ure 2 shows that lower hessian error correlates with lower
error on multiple thermodynamic properties. This motivates
that training directly on second-order force constants results
in more accurate predictions of these properties.

3.2. Phonon fine-tuning (PFT)

We propose phonon fine-tuning (PFT), a method for fine-
tuning MLIPs directly on DFT-computed force constants.
LPFT is a four term loss function, with terms that minimize
error in the energy, force, stress, and second-order force
constants:

LPFT = λELE + λFLF + λσLσ + λΦLΦ (8)

where we define

LΦ =
1

3Na

Na∑
a=1

3∑
i=1

Eb∼U [1,Na]
j∼U [1,3]

∣∣∣∣∣ ∂2Ê

∂ra,i ∂rb,j
− Φaibj

∣∣∣∣∣ (9)

where and Na is the number of atoms in a system. Note that
again the batch dimension is omitted for readability. Ê is the
predicted potential energy from the neural network; the first
three terms follow the standard EFS loss from Eq. (3) with
an MAE loss on energy and stress and a ℓ2 loss on forces.
Forces are predicted as the negative derivative of energy with
respect to position r, and stress is predicted as the derivative
of energy with respect to a symmetric strain tensor. The

second-order force constants are predicted analytically as
the hessian of the energy with respect to two atom positions.

To improve computational efficiency and enable training on
large supercells, we uniformly sample one atom and Carte-
sian direction for each structure in the batch, effectively
selecting one column of the hessian. This requires only a
single Hessian-vector product (see next section) to compute
the loss across the whole batch, while effectively still train-
ing on the full Hessian in expectation. This reduces the
computational complexity of a training step from O(N2)
to O(N) for N number of atoms. Furthermore, by using a
symmetry-aware E(3)-equivariant architecture, many Hes-
sian elements are redundant due to the high symmetry of the
force constants of a crystal structure (Califano et al., 1981).
More consideration may be necessary with regards to sam-
pling and data augmentation if non-equivariant architectures
are used.

Since the DFT phonon calculations themselves consist of
energy, force, and stress calculations under displacements
of atoms, it is reasonable to assume that one could simply
fine-tune models directly on this displacement data, as it
contains sufficient information for constructing the full Hes-
sian. Empirically we find this not to be the case, and observe
that directly finetuning on the phonon displacements results
in a worse hessian error. This suggests that the standard
practice of EFS training on DFT calculations of rattled, or
perturbed structures (Barroso-Luque et al., 2024; Kaplan
et al., 2025) may not be sufficient for correctly modeling
the PES curvature.

3.3. Efficient computation via Hessian-vector product

PFT requires computing a subset of predicted second deriva-
tives to compare to DFT-computed force constants for
large supercells. For a structure with atomic positions
r = (r1, ...rNa) ∈ R3N we form a selection vector v that
is composed of zeros everywhere except for the index cor-
responding to rb,j , the j-th Cartesian component of atom b,
where it is one. The corresponding hessian column is then
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Figure 3. Training ablation. The top row shows energy, force, and stress errors on the MPtrj validation set, while the bottom row
shows energy, force, stress, and hessian errors on the MDR Phonon validation set during finetuning of Nequix MP. We compare phonon
fine-tuning with and without co-training on MPtrj, as well directly finetuning energy, force, and stress on the phonon displacement
calculations. Co-training mostly mitigates degradation of MPtrj performance at only a slight increase in hessian error, and that training
directly on displacements worsens hessian performance over the base model. *We note that larger energy errors on MDR Phonon data are
likely due to a mismatch in energies between MPtrj and MDR Phonon, see Sec. A.1.

∇2
rÊ(r)v = ∇r

(
∇rÊ(r)⊤v

)
(10)

which can be computed using a Hessian-vector prod-
uct (HVP) without materializing the full hessian using a
forward-mode Jacobian-vector product (JVP) through a
reverse-mode gradient (Pearlmutter, 1994). In practice, Hes-
sian columns across a full batch of structures is computed
by forming a single graph of atom positions where each
structure is not connected, concatenating the sampled v for
each structure into a single vector, and computing the HVP
with respect to the sum of energies across all structures.
This facilitates calculation of the loss a with single HVP
call, and enables training on GPUs that would otherwise
not have enough memory for a single Hessian calculation,
especially for the large supercells that are needed for ac-
curate phonon calculations. Note that during training, this
results in a “triple-backward” as gradient-based optimiza-
tion requires a derivative of the HVP with respect to model
weights.

3.4. Co-training

While fine-tuning models on phonon data will more closely
align the curvature of the PES with that of DFT, this pro-
cedure may lead to catastrophic forgetting (French, 1999),
where the fine-tuning procedure effects the performance
of the model on its original upstream training data. This
may be an issue as phonon calculations are always done at
equilibrium, which can could cause forgetting for out-of-
distribution non-equilibrium configurations. Furthermore,

Algorithm 1 PFT training with co-training

Require: Phonon dataset Dphonon, upstream dataset Dup,
co-training ratio K, model Êθ

1: for batch in Dphonon do
2: Sample (b, j) ∼ U([1, Na]× [1, 3]) per structure
3: Update θ using LPFT (Eq. 8)
4: for k = 1 to K do
5: Sample batch from Dup
6: Update θ using LEFS (Eq. 3)
7: end for
8: end for

if the relative quantity and diversity of the phonon fine-
tuning dataset is less than that of the original pretraining or
fine-tuning datasets (such as the case in our experimental
setting)

We propose a simple solution to this by alternating training
steps between PFT steps and a typical energy/force/stress
(EFS) loss on the original upstream dataset, as outlined in
Algorithm 1. The ratio of EFS on the upstream dataset
to PFT steps on the phonon dataset K can be tuned by
monitoring validation datasets for both the upstream and
phonon datasets during training. As shown in Fig. 3, we
demonstrate that without co-training, PFT causes energy,
force, and stress errors to deviate quite significantly on the
upstream validation dataset. The introduction of co-training,
however, mostly eliminates this deviation with only a small
reduction in Hessian MAE.
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3.5. Analytical property prediction

As discussed, most existing methods for evaluating MLIPs
on higher order derivatives of the PES do so with finite
displacement (Loew et al., 2025; Póta et al., 2024). This
is typically accurate if the smoothness and continuity of
the PES is taken into account when designing the neural
network architecture; however, it does introduce an addi-
tional hyper-parameter in the form of displacement distance,
which can subtly effect results (Fu et al., 2025).

Leveraging the HVP, we can compute the full force con-
stants, see Eq. (6), by iterating over Hessian columns, paral-
lelizing HVP calls until GPU memory is saturated. While
in theory this computation may need to be conducted on a
graph that exceeds the receptive field of the neural network
(Fang et al., 2024), simply using the same supercell as the
DFT calculation will ensure we can sufficiently predict the
same phonon modes as the ground truth. In practice we
find that we achieve near identical results through analytical
force constant prediction and finite displacement, which we
show in Table 1.

4. Experiments
4.1. Training

For all experiments, we start with the Nequix MP (Koker
et al., 2025), whose JAX (Bradbury et al., 2018) implemen-
tation enables convenient auto-differentiation through the
hessian terms of the loss function. Nequix MP was trained
on MPtrj (Deng et al., 2023), a dataset of relaxation trajecto-
ries from the v2022.10.28 release of Materials Project
(Jain et al., 2013) consisting of 145,923 unique materials.
MPtrj will serve as the upstream dataset Dup

For phonon calculation data Dphonon, we use MDR Phonon
calculation database (Togo, 2023a), which was recalculated
by (Loew et al., 2025) using the PBE exchange correlation
functional in order to match the settings of the Materials
Project data. These calculations were conducted using finite
displacement (see Sec. 2.3), and contain the original en-
ergy/force/stress calculations at each displacement. While
the phonon data itself does not contain force, or stress labels
needed for the PFT loss function (Eq. 8), we assume the
force and stress labels are zero due to the strict structural
relaxation procedure done prior to the phonon calculation.
The energy label is computed by multiplying the provided
unitcell energy by the number of repetitions within the su-
percell used for calculations. Of the 9,959 materials within
the dataset, all but 91 exist in MPtrj based on mp-id. These
91 materials along with randomly selected calculations from
the remaining data are used as a test set of 1,000 materials,
with the rest of the data split into training/validation subsets
with proportion 95/5. This ensures any benefit we see from
PFT is due to the additional phonon information, and not

novel chemistry or geometries. We do note there is a dis-
crepancy between the energies of materials in phonon data
and MPtrj, which we detail in Sec. A.1.

We perform PFT both with (K = 4) and without (K = 0)
co-training for 200 epochs on the MDR Phonon data. With
co-training, this requires about 140 A100 hours, with about
60 A100 hours for PFT without co-training — significantly
fewer than the 500 A100 hours needed to train the base
Nequix MP model and a small fraction of other competitive
MPtrj-trained MLIPs (Koker et al., 2025). For details on
other hyper-parameters and their selection see Sec. A.2.

4.2. Phonon properties

Table 1. Evaluation of models on held-out MDR Phonon data.
Metrics are MAE of maximum phonon frequency ωmax (K), vibra-
tional entropy S (J/K/mol), Helmholtz free energy F (kJ/mol) and
heat capacity at constant volume CV (J/K/mol).

Model ωmax S F CV

MACE-MP-0 61 60 24 13
SevenNet-0 38 47 18 8
Nequix MP 24 32 12 6
SevenNet-l3i5 25 25 9 4
eSEN-MP 24 14 4 5

Nequix MP PFT 12 14 5 3
Nequix MP PFT (autodiff) 12 14 5 3
Nequix MP PFT (no cotrain) 10 11 4 2

Models are evaluated on the 1,000 material test subset of
phonon calculations by following the same procedure as
Loew et al. (2025), first performing a structural relaxation,
and then running phonon calculations with finite displac-
ment using phonopy (Togo et al., 2023). Thermodynamic
properties are calculated at 300K. We re-run several com-
petitive MPtrj-trained models (Batatia et al., 2025a; Park
et al., 2024; Koker et al., 2025; Fu et al., 2025) on the subset.
For Nequix MP PFT, we compute force constants with both
finite displacement, and analytically via AD.

Table 1 shows the errors of each model on phonon related
properties maximum phonon frequency, vibrational entropy,
Helmholtz free energy, and heat capacity at constant volume.
From the Nequix MP base model, PFT results in an average
reduction in property prediction error of 55%, and acheives
state-of-the-art error across all metrics for models trained on
MPtrj materials despite being the smallest model. We find
no significant differences between properties computed from
forces constants obtained via finite displacement or AD,
although the PFT model without co-training demonstrates a
slight improvement in prediction error.

Lastly, Fig. 4 shows several computed phonon band struc-
tures before and after PFT. As is to be expected, we find the
PFT leads to band structures that more closely align with
the DFT computed band structures.
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Figure 4. Phonon band structures. For ease of visualization, we display the phonon band structure for the three materials in the test
split of MDR Phonon with the fewest number of atoms. In the case of Carbon structure (mp-990448), it results in a dynamically stable
structure similar to DFT while the non-PFT model shows imaginary mode around the q-point A. Overall, we find that that PFT generally
produces bands with closer alignment to those of the DFT ground truth. More phonon bandstructures are provided in Fig. A.2.

4.3. Thermal conductivity

To demonstrate the effect of PFT on properties that are
higher-order derivatives of the PES, we evaluate the model
on thermal conductivity, a task from the Matbench Discov-
ery (Riebesell et al., 2025) benchmark. Thermal conductiv-
ity κ is a function of third-order force constants (Póta et al.,
2024), or the third derivative of the potential energy. Just
as with second order force constants, third order force con-
stants can be calculated with finite displacement, leveraging
symmetry to reduce the number of computations (Togo,
2023b).

Table 2. Matbench Discovery “compliant” leaderboard for thermal
conductivity, measured in symmetric relative mean error in pre-
dicted phonon mode contributions to thermal conductivity κSRME.

Model Params κSRME ↓
ORB v2 MPtrj 25.2M 1.725
eqV2 S DeNS 31.2M 1.676
MatRIS v0.5.0 MPtrj 5.83M 0.865
MACE-MP-0 4.69M 0.682
DPA-3.1-MPtrj 4.81M 0.650
HIENet 7.51M 0.642
SevenNet-l3i5 1.17M 0.550
GRACE-2L-MPtrj 15.3M 0.525
Nequip-MP-L 9.6M 0.452
Nequix MP 707K 0.446
Eqnorm MPtrj 1.31M 0.408
eSEN-30M-MP 30.1M 0.340

Nequix MP PFT 707K 0.306
Nequix MP PFT (no cotrain) 707K 0.281

We follow the procedure used by Matbench Discovery
(Riebesell et al., 2025; Póta et al., 2024) performing a struc-
tural relaxation and then calculation of the third-order force
constants with a displacement of 0.03 Å. Results from all of
the other MPtrj-trained, or “compliant” models (Neumann
et al., 2024; Barroso-Luque et al., 2024; Zhou et al., 2025;
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Figure 5. Thermal conductivity vs. Hessian error. Scatter
plot of several models Hessian MAE on the MDR phonon test
set vs. symmetric relative mean error in predicted phonon mode
contributions to thermal conductivity κSRME. We find there is still a
strong trend in between the two despite thermal conductivity using
third-order force constants.

Batatia et al., 2025a; Zhang et al., 2025; Yan et al., 2025;
Park et al., 2024; Bochkarev et al., 2024; Tan et al., 2025;
Koker et al., 2025; Chen et al., 2025; Fu et al., 2025) sourced
from the Matbench Discovery leaderboard are shown in Ta-
ble 2.

Similarly to phonon properties we find a reduction in error
of 31% from the base Nequix MP model, and state-of-the-
art performance for MPtrj-trained models. In Fig. 6, we
show macroscopic conductivity predictions for two zinc
blends, AgI and BeO, showing again that PFT aligns pre-
dictions closer to the ground truth DFT calculation. This
shows that PFT not only improves second order vibrational
properties, but also generalizes to third order, or anharmonic,
vibrational properties.
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Figure 6. Macroscopic conductivity predictions. Macroscopic
thermal conductivity calculations for zinc blend AgI (left), which
exhibits low conductivity and zinc blend BeO (right), which ex-
hibits high conductivity. DFT calculations are from (Togo, 2025).
PFT produces conductivity predictions closer to the ground truth.

4.4. Matbench Discovery

The main Matbench Discovery task (Riebesell et al., 2025)
consists of a geometry optimization followed by energy pre-
diction to determine material stability. Performance on this
task is less influenced by curvature of the PES and largely
dictated by energy error so it highlights any degradation
of energy prediction caused by finetuning. Table 3 shows
the evaluation of the geometry optimization task, measured
in in root mean squared distance (RMSD) from the DFT-
optimized structures as well as the F1 score of the stability
classification task.

Table 3. Evaluation of models on Matbench Discovery, consist-
ing of geometry optimization, measured in RMSD (Å) and sta-
ble/unstable material classification F1 on unique prototypes.

Model RMSD↓ F1↑
Nequix MP 0.0853 0.751

Nequix MP PFT 0.0866 0.747
Nequix MP PFT (no cotrain) 0.0893 0.301

We find that neither PFT models improve performance over
the base model. This may be expected, especially for F1,
as the finetuning data has no additional energy data from
extra chemistries or geometries, so performance of the ar-
chitecture in this task will be saturated by the original MPtrj
training data. However, the co-training is vital for preserv-
ing performance on this task; while the non co-trained PFT
model worsens RMSD and F1 by 5% and 60% respectively,
co-training reduces this difference to less than a 2% increase
in geometry optimization RMSD and less than 1% reduction
in stability classification F1.

5. Related Work
Several works have proposed the use of Hessians for training
interatomic potentials. Fang et al. (2024) first demonstrated

the ability to use AD for phonon prediction through the
use of an extended graph, eliminating previously aforemen-
tioned issues introduced with self-interaction under finite
displacement calculations. They also demonstrate the train-
ing of MLIP models on hessians of small organic molecules.
Gangan et al. (2025) demonstrate gradient-based optimiza-
tion of the classical Stillinger-Weber and EDIP potentials to
align with DFT-computed phonon and elastic constant cal-
culations. Amin et al. (2025) introduced a method of model
distillation by training smaller MLIP on the analytical Hes-
sians of larger, more accurate models. They also randomly
sample columns of the Hessian, but use the Jacobian-vector
product of direct-force prediction (i.e. non-energy conserv-
ing) models for training.

Lastly, (Burger et al., 2025) proposed the direct prediction
hessians in small organic molecules, bypassing the need
for AD or finite-difference calculations. While this may be
beneficial in terms of computational cost, models would not
be able to benefit from pre-training on the large quantities
of available DFT calculations. Furthermore, tasks such as
molecular dynamics, which require lower-order forces, or
thermal conductivity which require higher third-order force
constants, would be infeasible to conduct.

6. Discussion
Phonon fine-tuning (PFT) provides a simple, model agnostic
method to improve vibrational and thermal property predic-
tions by directly supervising PES curvature. Across MDR
Phonon and Matbench Discovery thermal conductivity, we
find that reducing Hessian error aligns phonon-derived ob-
servables and can transfer to downstream properties that
depend on higher-order energy derivatives. PFT uses force-
constants already produced by standard DFT phonon work-
flows, and remains scalable to large supercell via stochastic
Hessian column sampling and Hessian-vector products.

We also highlight practical considerations for training on
phonon calculations. Training necessitates access to higher-
order derivatives through automatic differentiation, e.g. with
JAX. Phonon datasets are biased towards relaxed equilib-
rium structures, and training on these alone may not resolve
errors far from equilibrium, motivating continual learning
strategies such as co-training.

Scaling PFT to larger and more diverse phonon datasets,
or with more accurate base models with larger pre-training
datasets could improve accuracy and generalization. Beyond
force constants, this work could be extended to other DFT-
computed higher-order energy derivatives such as elasticity
or anharmonic force constants, as well as with properties
obtained through experiment.
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Code and Data
We provide the source code used in this work, trained
model weights, and preprocessed training data at https:
//github.com/atomicarchitects/nequix/.
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Jäger, F., Wang, H.-C., Botti, S., and Marques, M. A.
Improving machine-learning models in materials science
through large datasets. Materials Today Physics, 48:
101560, 2024.

Tan, C. W., Descoteaux, M. L., Kotak, M., Nascimento, G.
d. M., Kavanagh, S. R., Zichi, L., Wang, M., Saluja, A.,
Hu, Y. R., Smidt, T., et al. High-performance training
and inference for deep equivariant interatomic potentials.
arXiv preprint arXiv:2504.16068, 2025.

Togo, A. MDR phonon calculation database.
https://mdr.nims.go.jp/collections/
8g84ms862?locale=en, 2023a.

Togo, A. First-principles phonon calculations with phonopy
and phono3py. J. Phys. Soc. Jpn., 92(1):012001, 2023b.
doi: 10.7566/JPSJ.92.012001.

Togo, A. Phono3py input data for 103 compounds calcu-
lated using the finite displacement method with PBE,
2025. URL https://github.com/atztogo/
phonondb.

Togo, A., Chaput, L., Tadano, T., and Tanaka, I. Im-
plementation strategies in phonopy and phono3py. J.
Phys. Condens. Matter, 35(35):353001, 2023. doi:
10.1088/1361-648X/acd831.

Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M.,
Poltavsky, I., Schutt, K. T., Tkatchenko, A., and Muller,
K.-R. Machine learning force fields. Chemical Reviews,
121(16):10142–10186, 2021.

Wood, B. M., Dzamba, M., Fu, X., Gao, M., Shuaibi, M.,
Barroso-Luque, L., Abdelmaqsoud, K., Gharakhanyan,
V., Kitchin, J. R., Levine, D. S., et al. Uma: A
family of universal models for atoms. arXiv preprint
arXiv:2506.23971, 2025.

Yan, K., Bohde, M., Kryvenko, A., Xiang, Z., Zhao, K.,
Zhu, S., Kolachina, S., Sarıtürk, D., Xie, J., Arróyave,
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A. Appendix
A.1. Energy discrepancy between PBE MDR and MPtrj datasets

We compare the DFT energies within the PBE recalculation of the MDR Phonon database (Togo, 2023a) by Loew et al.
(2025) to those within MPtrj (Deng et al., 2023; Jain et al., 2013). This is performed by selecting the 9959 matching materials
across datasets by mp-id. For MPtrj we select the final relaxed structure energy, and for both datasets we normalize by
number of atoms to offset differences caused by unitcell selection. The energies and the error between them are plotted in
Fig. A.1. We find that, while the energies are generally in agreement, there exists a slight shift between the two datasets
with a MAE of 31.60 meV/atom. Furthermore there are several outliers with energy differences up to 1.5 eV/atom. We
suspect this systemic shift is the cause of the consistent ≈ 30 meV/atom MAE reported with all interatomic potentials used
in Loew et al. (2025), and energy MAE seen in Fig. 3.
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Figure A.1. MDR Phonon and MPtrj energy comparison. Left: Parity plot of energies from MPtrj (Deng et al., 2023; Jain et al., 2013)
vs. PBE MDR Phonon (Togo, 2023a; Loew et al., 2025). Right: Histogram of differences in energy between materials in two datasets.
Absolute differences less than 150 meV/atom are shown in the main plot with the remaining outliers in the inset.

A.2. Hyper-parameters

Table A.1 shows the hyper-parameters and method for selection for the Nequix PFT models.

Table A.1. Hyper-parameters used and rationale behind selection

Hyper-parameter Nequix MP PFT Nequix MP PFT (no cotrain) Notes/Rationale

Pretrained Model Nequix MP Nequix MP See Koker et al. (2025) for architecture details.
Learning rate 0.0003 0.0003 Selected from {0.003, 0.001, 0.0003, 0.0001}

based on validation performance early in train-
ing.

Optimizer AdamW AdamW Standard optimizer.
Weight decay 0.001 0.001 From Nequix MP.
Phonon energy weight λE 0 20 From Nequix MP.
Phonon force weight λF 20 20 From Nequix MP.
Phonon stress weight λσ 5 5 From Nequix MP.
Phonon force constant weight λΦ 100 100 Not tuned, selected to be larger than other

weights.
Cotrain energy weight λE 500 n/a Started with Nequix MP value × 10, increased

until MPtrj validation energy does not diverge.
Cotrain force weight λF 200 n/a Nequix MP value × 10.
Cotrain stress weight λσ 50 n/a Nequix MP value × 10.
Cotrain ratio K 4 n/a Trade off between training time and overfitting to

phonon data; 4 cotraining steps for every phonon
step is reasonable.

Batch size 16 16 Maximum for GPU memory.
Number of epochs 200 200 Not tuned, based on GPU budget. May benefit

from longer training, but validation metrics are
mostly converged at this duration.
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A.3. Elastic properties

We also benchmark the performance effects of PFT on materials elastic properties A.2. For the benchmark we use MatCalc’s
Elasticity Calc(Liu et al., 2024) based the settings as described in and the ml-peg package (Kasoar et al., 2025; Batatia et al.,
2025b) whereby the elastic tensor and derived properties like the bulk K and shear G modulus are obtained. Voigt-Reuss-Hill
(VRH) average is used to report the final values for which we compute the metrics. We observe that the error on shear
modulus is lowered for the PFT model while bulk modulus is worsened. Overall, performance on both modulus is improved
for the PFT model. We also report the failure rate for the models for which MatCalc calculations fail to converge..

Table A.2. Evaluation of models on Materials Project elastic properties containing 12,122 different materials. Metrics are mean absolute
error of bulk modulus K and shear modulus G in units of GPa, correlation score, as well as success rate of computations. To compare the
models in a fair way we only consider the materials for which both models return a valid output.

Model K MAE G MAE R2
K R2

G Failure

Nequix MP 15.03 18.16 0.89 0.44 18.37%

Nequix MP PFT 16.49 16.41 0.87 0.54 18.21%

A.4. Phonon bandstructures

Figure A.2 shows additional examples of bandstructures calculated with Nequix MP PFT.
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Figure A.2. Phonon bandstructures with Nequix MP PFT. Following (Fang et al., 2024), we display predicted bandstructures (with
DFT in black) of four randomly selected materials from each tercile of Hessian error in the PBE MDR phonon test set. The top row shows
lowest error, and the bottom row shows highest error materials. Bandstructures are calculated with phonopy (Togo et al., 2023). Note
that the number bands is 3× the number of atoms in the unit cell.
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